Setup Menus in Admin Panel

Korelasi

Korelasi merupakan salah satu teknik analisis dalam statistik yang digunakan untuk mencari hubungan antara dua variabel yang bersifat kuantitatif. Hubungan dua variabel tersebut dapat terjadi karena adanya hubungan sebab akibat atau dapat pula terjadi karena kebetulan saja. Dua variabel dikatakan berkolerasi apabila perubahan pada variabel yang satu akan diikuti perubahan pada variabel yang lain secara teratur dengan arah yang sama (korelasi positif) atau berlawanan (korelasi negatif). Sebagai contoh, kita bisa menggunakan tinggi badan dan usia siswa SD sebagai variabel dalam korelasi positif. Semakin tua usia siswa SD, maka tinggi badannya pun menjadi semakin tinggi. Hubungan ini disebut korelasi positif karena kedua variabel mengalami perubahan ke arah yang sama, yakni dengan meningkatnya usia, maka tinggi badan pun ikut meningkat.

Nilai korelasi berkisar antara 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat. Sebaliknya, jika nilai mendekati 0 berarti hubungan antara dua variabel semakin lemah. Nilai positif menunjukkan hubungan searah (X naik, maka Y naik) sementara nilai negatif menunjukkan hubungan terbalik (X naik, maka Y turun). Terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan Korelasi Rank Spearman.

Korelasi Pearson menghitung korelasi dengan menggunakan variasi data. Keragaman data tersebut dapat menunjukkan korelasinya. Korelasi ini menghitung data apa adanya, tidak membuat ranking atas data yang digunakan seperti pada korelasi Rank Spearman. Ketika kita memiliki data numerik seperti nilai tukar rupiah, data rasio keuangan, tingkat pertumbuhan ekonomi, data berat badan dan contoh data numerik lainnya, maka Korelasi Pearson Product Moment cocok digunakan.

Sebaliknya, Koefisien Korelasi Rank Spearman digunakan untuk data diskrit dan kontinu namun untuk statistik nonparametrik. Korelasi Rank Spearman menghitung korelasi dengan menghitung ranking data terlebih dahulu. Artinya korelasi dihitung berdasarkan orde data. Ketika peneliti berhadapan dengan data kategorik seperti kategori pekerjaan, tingkat pendidikan, kelompok usia, dan contoh data ketegorik lainnya, maka Korelasi Rank Spearman cocok digunakan. Korelasi Rank Spearman pun cocok digunakan pada kondisi dimana peneliti dihadapkan pada data numerik (kurs rupiah, rasio keuangan, pertumbuhan ekonomi), namun peneliti tidak memiliki cukup banyak data (data kurang dari 30).

 

Korelasi Pearson

  • => Konsep dasar korelasi Pearson
  • => Koefisien korelasi
  • => Uji hipotesis korelasi

Korelasi Rank-Spearman

  • => Konsep dasar korelasi Rank-Spearman
  • => Koefisien korelasi
  • => Uji hipotesis korelasi

Korelasi Kendal Tau

  • => Konsep dasar korelasi pearson
  • => Koefisien korelasi
  • => Uji hipotesis korelasi

Koefisien kontingensi

  • => Konsep dasar koefisien kontingensi (C)
  • => Koefisien korelasi
  • => Uji hipotesis korelasi

Penerapan Korelasi dengan Menggunakan Aplikasi Statistik

Lama Pelatihan : 2 Jam

Copyright © 2018 PT. Angsa Statistika Indonesia